Fundamental Results about the Fractional Integro-Differential Equation Described with Caputo Derivative

نویسندگان

چکیده

In this paper, we study the existence and uniqueness of mild solution fractional integro-differential with nonlocal initial condition described by Caputo operator. Note that here order derivative satisfies α ∈ 1 , 2 . The id="M2"> -resolvent operator in Banach space fixed point theorem has been utilized proof solution. We have established paper Hyers-Ulam stability considered equation. An illustrative example provided to support main findings paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative

This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...

متن کامل

Implicit Fractional Differential Equations via the Liouville–Caputo Derivative

We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.

متن کامل

Existence results for hybrid fractional differential equations with Hilfer fractional derivative

This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.

متن کامل

Positive Solution of a Nonlinear Fractional Differential Equation Involving Caputo Derivative

This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigat...

متن کامل

Fractional Descriptor Continuous-Time Linear Systems Described by the Caputo-Fabrizio Derivative

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of function spaces

سال: 2022

ISSN: ['2314-8896', '2314-8888']

DOI: https://doi.org/10.1155/2022/9174488